
What is Software?

Software is a collection of

 Instructions (Computer programs) that when executed provide desired
function and performance.

 Data structure that enable the programs to adequately (effectively)
manipulate information. And

 Documents that describe the operation and use of the programs.

 Software is a logical entity rather than a physical system element.

Software Engineering

Definition of Engineering

Application of science, tools and methods to find cost effective solution to
problems

Definition of SOFTWARE ENGINEERING

Software engineering is a systematic approach to the development, operation
maintenance and requirements of the software.

1. Software engineering is the application of science and mathematics by
which the capabilities of computer equipment’s are made useful to man
via computer program, procedures and associated documents.

2. Software engineering is a set of 3 elements methods, tool & procedure
software engineering methods provides.

The technical – how tools for building a software it includes project planning
estimation of the project system and software requirement analysis design of
data structure architecture & algorithms procedures.

Software engineering tool provides automated & semi-automated support for
methods. When tools are integrated so that the support can be made for
software development is called CASE (Computer Aided Software Engineering).
CASE combine software, hardware & software engineering database. Software
engineering procedures define the sequence in which methods will be applied.

Goal of Software Engineering

Software engineering is driven by three major factors as are follows.

 Cost
 Schedules
 Quality

Characteristics of the Software

Software is a logical rather than a physical system element therefore software
has characteristic that are different then hardware component.

1. Software is developed or engineered it is not manufacture in the classical
sense.

In both activities software development and hardware manufacturing, high
quality is achieved through good design, but the manufacturing phase for
hardware can introduce quality problems that are nonexistence (or easily
corrected) for software. Both activities depend on people, but the relationship
between people applied and work accomplished is entirely different. Both
activities require the construction of a product, but the approaches are
different.

2. Software does not wear out.

Above figure depicts failure rate as a function of time for hardware. The
relationship often called the “bathtub curve” indicates that hardware
exhibits relatively high failure rate early in its life. (This failures are
often attributable to design or manufacturing defects); defects are
corrected and the failure rate drops to a steady state level (hopefully
quite low) for some period of time. As time passes, however, the failure
rate rises again as hardware components suffer from the cumulative
effects of dust, vibrations, abuse, temperature extremes, etc. Stated
simply, hardware begins to wear out.

Figure B – Idealized and actual failure curves for software As shown in
figure (B), the failure rate curve for software shows that, undiscovered
defects will cause high failure rates early in the life of a program. These
are corrected (without introducing other errors) and the curve flattens
as shown in figure (B). Software doesn’t wear out, but it does deteriorate.
During the software life, it will undergo change (maintenance). As
changes are made, it is likely that some new defects will introduced,
causing the failure rate cure to spike. Before the curve can return to the
original steady-state failure rate, another change is requested, causing
the curve to spike again. Slowly, the minimum failure rate level begins to
rise the software is deteriorating due to change. Hardware component
wears out; it is replaced by a spare part. There are no software spare

parts. Every software failure indicates an error in design or in the
process through which design was translated into machine executable
code. Therefore, software maintenance involves considerably more
complexity than hardware maintenance.

3. Most software is custom built rather than being assembled from
existing components. Re usability is an important characteristic of
high quality software component. A software component should be
designed and implemented so that it can be reused in many
different programs. Modern reusable components encapsulate both
data and the processing that is applied to the data, enabling the
software engineer to create new applications from reusable parts.
For e.g. today’s interactive interfaces are built using reusable
components that enable the creation of graphics windows, pull
down menus and a wide variety of interaction mechanisms.
Software components are built using a programming language that
has a limited vocabulary. An explicitly defined grammar and well-
formed rules of syntax and semantics. At the lowest level, the
language mirrors the instruction set of the hardware. But
Sometimes reusable components does not fulfill the requirement
there may be some changes we want but because of its complexity
of code means we have to understand the whole component for
making some changes to it , which is very complex task instead of
this we can create a custom component.

Software Applications

 1) System software

2) Real-Time Software

3) Business Software

4) Engineering and scientific software

5) Embedded Software

6) Personal Computer Software

7) Web-Applications

8) Artificial intelligence software

System Software

System software is a type of computer program that is designed to run a
computer’s hardware and application programs. If we think of the computer
system as a layered model, the system software is the interface between the
hardware and user applications.

The operating system (OS) is the best-known example of system software. The
OS manages all the other programs in a computer.

System software is a collection of a program written to service other
programs. Some system software (e.g. Compilers, editors and file management
utilities) processes complex; but determinate information structures.

Other system applications (e.g. operating system components, drivers,
telecommunications processors).

Real time Software

Programs that monitor/analyze/control real world events as they occur are
called real time software.

Elements of real time software includes

- Data gathering components

- Analysis components

- Control / output components

- Monitoring components

A real time system must respond within strict time constraints.

Real time system differs from interactive or time sharing. The response time
of an interactive system can normally be exceeded without
disastrous[terrible] results.

Eg. Weather forecasting s/w

Business Software

Business information processing is the largest single software application
area.

Discrete systems (e.g. Payroll, accounts receivable/payable, inventory etc.)
have evolved into management information system (MIS) software that
accesses one or more large databases containing business information.

Applications in this area restructure existing data in a way that facilitates
business operations or management decision making.

e.g. Client/Server computing application.

Engineering and Scientific Software

Engineering and scientific software has been characterized by “number
crunching” algorithms.

Application range from astronomy to volcano logy, from automotive stress
analysis to space shuttle orbital dynamics and from molecular biology to
automated manufacturing.

Eg. Radar s/w, military s/w

Embedded Software

Embedded software resides in RAM and is used to control products and
systems for the consumer and industrial markets.

Embedded software can perform very limited and esoteric functions (e.g. key
pad control for microwave oven, washing Machine, AC etc.) or provide
significant function and control capability.

(e.g. Digital functions in an automobile such as fuel control, dashboard
displays, braking system, etc.)

Personal Computer Software

Word processing, spreadsheets, computer graphics, multimedia,
entertainment, database management, personal and business financial
applications and external network or database access are some of the example
of personal computer software.

Eg. Desktop Based Applications (Word, Excel , power point , Photoshop etc.)

Web-Applications

The web pages retrieved by a browser are software that incorporates
executable instructions. In essence, the network becomes a massive computer
providing almost unlimited software resources that can be accessed by
anyone with a modem.

Eg. Websites

Artificial intelligence Software [AI s/w]

Artificial intelligence software makes used of non-numerical algorithms to
solve complex problems that are not amenable to computation or straight –
forward analysis.

An active Artificial Intelligence area is expert systems, also called knowledge
based systems.

Other application area for AI software is pattern recognition (image and
voice) theorem proving and game playing.

In recent years, new branch of AI is Artificial neural networks has evolved. A
neural network simulates the structure of brain processes (the function of the
biological neuron).

Eg. Decision Making s/w

Software Myths

 Management Myths:

1. We already have a book that’s full of standards and procedures for
building software. Won’t that provide my people with everything they
need to know?

Reality: The book of standards may very well exist, but is it used? Are
software practitioners aware of its existence? Does it reflect modern
software engineering practice? Is it complete? Is it streamlined to
improve time to delivery while still maintaining a focus on quality? In
many cases, the answer to all of these questions is "no."

2. If we get behind schedule, we can add more programmers and catch
up (sometimes called the Mongolian horde concept).

 Reality: people who were working must spend time educating the
newcomers.

3. My people have state-of-art software development tools; after all,
we buy them the newest computers.

 Reality: It takes much more than the latest model mainframe,
workstation, or PC to do high-quality software development. Computer-
aided software engineering (CASE) tools are more important than
hardware for achieving good quality and productivity, yet the majority of
software developers still do not use them effectively.

4. If I decide to outsource the software project to a third party, I can
just relax and let that firm build it.

 Reality: If an organization does not understand how to manage and
control software projects internally, it will invariably struggle when it
outsources software projects.

Customer Myths:

1A general statement of objective is sufficient to begin writing programs we
can fill in the details later.

Reality: poor up-front definition is the major cause of failed software efforts.

2. Project requirements continually change, but change can be
easily accommodated because software is flexible.

 Reality: It is true that software requirements change, but the
impact of change project schedule and planning will be disturbed.

Practitioner’s Myths: [developer’s myths]

1. Once we write the program and get it to work, our job is done.

Reality: software can be expended after it is delivered to the customer for the
first time.

2. Until I get the program “running” I have no way of assessing its quality.

Reality: One of the most effective software quality assurance mechanisms can
be applied from the inception of a project—the formal technical review.
Software reviews are a "quality filter" that have been found to be more
effective than testing for finding certain classes of software defects.

3. The only deliverable work product for a successful project is the working
program.

Reality: A working program is only one part of a software configuration that
includes any elements. Documentation provides a foundation for successful
engineering and, more important, guidance for software support.

4. Software Engineering will make us to create voluminous and
unnecessary documentation and will invariably slow us down.

Reality: Software engineering is not about creating documents. It is about
creating quality. Better quality leads to reduced rework. And reduced rework
results in faster delivery times.

SOFTWARE ENGINEERING LAYERS

Software Engineering is the establishment and use of sound Engineering
principles in order to obtain economical software that is reliable and works
efficiently on real machines.

 Software Engineering is around the three layers (elements):

- Process

- Methods

- Tools

- Quality Focus

Process:

The foundation for software engineering is a process layer. Software
engineering process is the glue that holds the technology layers together and
enables rational, timely development of computer software.

Process defines a framework for a set of key process areas that must be
established for effective delivery of software engineering technology.

The key process area forms the basis for management control of software
projects and establish the context in which technical methods are applied,
work products (models, documents, data, reports, forms, etc.) are produced,
milestones are established, quality is ensured, and change is properly
managed.

Process is a step by step plan to complete a task.

Methods:

SE methods provide the technical “how to’s” for building software. Methods
encompass [include] a broad array of tasks that include requirements
analysis, design, program construction, testing and maintenance.

SE methods relay on a set of basic principles that govern each area of the
technology and include modeling activities and other descriptive techniques.

Tools:

SE tools provide automated or semi-automated support for the process and
the methods.

When tools are integrated so that information created by one tool can be used
by another, a system for the support of software development, called
Computer Aided Software Engineering (CASE) is established.

CASE combines software, hardware and software engineering database (a
repository containing important information about analysis, design, program
construction and testing) to create a software engineering environment that is
analogous to CAD/CAE (Computer Aided Design / Engineering) for hardware.

Generic-View-of-Software-Engineering
The work that is associated with software engineering can be
categorized into three generic phases:

1. Definition phase
2. Development phase
3. Maintenance phase

Definition Phase:
 Definition phase answers “what” questions that is during the
definition the software developers attempts to identify.

 What information is to be processed?
 What function and performance are desired?
 What validation conditions are required?
 What types of interfaces are to be established?
 What design constraints exists?

All the questions can be answered through
1. System Analysis
2. Software Project Planning
3. Requirement Analysis

Development Phase:

 Development phase answered “How” questions. In this p hase
developer attempts to answer

 How data structure and software architecture are to be
designed?

 How procedural details are to be implemented?
 How design will be translated into a programming language?
 How testing will be performed?

All the previous questions can be answered through
1. Software Design
2. Coding and
3. Software Testing

Maintenance Phase:

There are four types of maintenance, namely, corrective,
adaptive, perfective, and preventive. Corrective maintenance
is concerned with fixing errors that are observed when the
software is in use. Adaptive maintenance is concerned with
the change in the software that takes place to make the
software adaptable to new environment such as to run the
software on a new operating system. Perfective maintenance
is concerned with the change in the software that occurs
while adding new functionalities in the software. Preventive
maintenance involves implementing changes to prevent the
occurrence of errors. The distribution of types of
maintenance by type and by percentage of time consumed.

The maintenance phases focus on change that is associated with:
 Error correction
 Adaptation required
 Enhancement
 Prevention
Error Correction [corrective maintenance]

Corrective maintenance deals with the repair of faults or defects found in day-
today system functions. A defect can result due to errors in software design, logic
and coding. Design errors occur when changes made to the software are
incorrect, incomplete, wrongly communicated, or the change request is
misunderstood. Logical errors result from invalid tests and conclusions, incorrect
implementation of design specifications, faulty logic flow, or incomplete test of
data. All these errors, referred to as residual errors, prevent the software from
conforming to its agreed specifications. Note that the need for corrective
maintenance is usually initiated by bug reports drawn by the users.

 It is likely that the customer will uncover defects in the software.
Corrective maintenance changes the software to correct defects.

Adaptation [adaptive maintenance]

Adaptive maintenance is the implementation of changes in a part of the system,
which has been affected by a change that occurred in some other part of the
system. Adaptive maintenance consists of adapting software to changes in the
environment such as the hardware or the operating system. The term
environment in this context refers to the conditions and the influences which act
(from outside) on the system. For example, business rules, work patterns, and
government policies have a significant impact on the software system.

For instance, a government policy to use a single 'European currency' will have a
significant effect on the software system. An acceptance of this change will
require banks in various member countries to make significant changes in their
software systems to accommodate this currency. Adaptive maintenance accounts
for 25% of all the maintenance activities.

 Over time, the original environment (e.g. CPU, OS, Business Rules
etc.) for which the software was developed is likely to
change. Adaptive maintenance results in modification to the
software to accommodate changes to its external environment.

Perfective maintenance [Enhancement]

Perfective maintenance mainly deals with implementing new or
changed user requirements. Perfective maintenance involves making
functional enhancements to the system in addition to the activities to
increase the system's performance even when the changes have not
been suggested by faults. This includes enhancing both the function
and efficiency of the code and changing the functionalities of the
system as per the users' changing needs.

Examples of perfective maintenance include modifying the payroll
program to incorporate a new union settlement and adding a new
report in the sales analysis system. Perfective maintenance accounts
for 50%, that is, the largest of all the maintenance activities.

As software is used, the customer/user will recognize additional
functions that will provide benefit. Perfective maintenance extends
the software beyond its original functional requirements.

Prevention [Preventive maintenance]

Preventive maintenance involves performing activities to prevent the occurrence
of errors. It tends to reduce the software complexity thereby improving program
understandability and increasing software maintainability. It comprises
documentation updating, code optimization, and code restructuring.
Documentation updating involves modifying the documents affected by the
changes in order to correspond to the present state of the system. Code
optimization involves modifying the programs for faster execution or efficient use
of storage space. Code restructuring involves transforming the program structure
for reducing the complexity in source code and making it easier to understand.

Preventive maintenance is limited to the maintenance organization only and no
external requests are acquired for this type of maintenance. Preventive
maintenance accounts for only 5% of all the maintenance activities.

 Computer software deteriorates due to change, and because of this,
preventive maintenance often called software reengineering must be
conducted to enable the software to serve the needs of its end users.

What are umbrella activities in software engineering?

The phases and related steps described in generic view of SE are
complemented by a number of Umbrella Activities as under:

1. Software project tracking and control
- Allows the team to assess progress against the project plan and take

necessary action to maintain schedule.
2. Formal technical reviews
- Uncover and remove errors before they propagate to the next action.
3. Software quality assurance

This is very important to ensure the quality measurement of each part to
ensure them.

4. Software Configuration management
Software configuration management (SCM) is a set of activities designed
to control change by identifying the work products that are likely to
change, establishing relationships among them, defining mechanisms for
managing different versions of these work products.

5. Document preparation and production
All the project planning and other activities should be hardly copied and
the production gets started here.

6. Reusability management
This includes the backing up of each part of the software project they can
be corrected or any kind of support can be given to them later to update
or upgrade the software at user/time demand.

7. Measurement

- Defines and collects process, project, and product measures that assist
the team in delivering S/W that meets customers’ needs.

8. Risk management
Risk management is a series of steps that help a software team to
understand and manage uncertainty. It’s a really good idea to identify it,
assess its probability of occurrence, estimate its impact, and establish a
contingency plan that─ ‘should the problem actually occur’.
Umbrella activities are applied throughout the software process.

Linear sequential model or Classic life cycle model or Waterfall model

The simplest process model is the water fall model which states that the force
is organized in a linear order. So it is also known as the linear sequential
model or classic life style model. The linear sequential model is oldest and the
most widely used paradigm for software engineering. Linear sequential model
suggests a systematic, sequential approach to software development that
begins at the system level and progresses through analysis, design, coding,
testing and maintenance.

Modeled after the conventional engineering cycle, the linear sequential model
encompasses the following activities.

1. System / Information engineering and modeling
2. Software requirement analysis
3. Design
4. Code generation
5. Testing
6. Maintenance

System / Information Engineering

Because software is always part of a larger system (or business), work begins
by establishing requirements for all system elements and then allocating
some subset of these requirements to software.

This view is essential when software must interface with other elements such
as hardware, people, and databases. This provides Top-Level design and
analysis.

 Software requirements analysis

The requirements gathering process is intensified and focused specifically on
software.

Analysis is important for software engineer to understand the information
domain for the software, required functions, behavior, performance, and
interfacing.

Requirements for both the system and the software are documented and
reviewed with the customer.

Design

Software design is actually a multi-step process that focuses on data structure,
software architecture, procedural detail and interface characterization.

The design process translates requirements into a representation of the
software that can be assessed for quality before code generation begins.

The design documents must be prepared and stored as a part of software
configuration.

4. Code generation

The code generation step translates the design into a machine readable form.
If design is performed in a detailed manner, code generation can be
accomplished mechanistically.

5. Testing

Once code has been generated, program testing begins. The testing process
focuses on the logical internals of the software, assuring that all statements
have been tested, and on the functional externals – that is, conducting test to
uncover errors and ensure that defined input will produce actual results that
agree with required results.

6. Maintenance

Software will undergo change after it is delivered to the customer. Change will
occur because, errors have been encountered or to accommodate changes in
its external environment (e.g. change in device) or customer requires
functional or peripheral enhancement.

Advantages:

 Simple and systematic.
 Linear ordering clearly marks the end of the one phase and starting of

another phase
 The output of particular phase will be input for next phase there for this

output are normally referred as intermediate product or based line.

Disadvantage or problems:

1) Real projects rarely follow the sequential flow that the model proposes.
Changes can cause confusion as the project team proceeds.

2) It is difficult for the customer to state all requirements explicitly at the
beginning of the projects.

3) The water fall model assumes that the requirement should be completely
specified before the rest of the development can proceed. In some situation it
might be required that first developed a part of the system completely and
then later enhance a system where the client face an important role in
requirement specification.

4) The customer must have patience. A working version of program(s) will
not be available until late in the project time span.

5) Development is often delayed unnecessarily. The linear nature of the
classic life cycle leads to “Blocking state” in which some project team members
must wait for other members of the team to complete dependent tasks.

6) The time spent waiting can exceed the time spent on productive work.

Prototyping Model in Software Engineering

The prototyping model is applied when detailed information related to input
and output requirements of the system is not available. In this model, it is
assumed that all the requirements may not be known at the start of the
development of the system. It is usually used when a system does not exist or
in case of a large and complex system where there is no manual process to
determine the requirements. This model allows the users to interact and
experiment with a working model of the system known as prototype. The
prototype gives the user an actual feel of the system.

At any stage, if the user is not satisfied with the prototype, it can be discarded
and an entirely new system can be developed. Generally, prototype can be
prepared by the approaches listed below.

• By creating main user interfaces without any substantial coding so that users
can get a feel of how the actual system will appear.

• By abbreviating a version of the system that will perform limited subsets of
functions.

• By using system components to illustrate the functions that will be included
in the system to be developed.

 Using the prototype, the client can get an actual feel of the system. So, this
case of model is beneficial in the case when requirements cannot be freezed
initially.

 This prototype is developed based on the currently known requirements.
Development of the prototype obviously undergoes design, coding, and
testing, but each of these phases is not done very formally or thoroughly.

By using this prototype, the client can get an actual feel of the system, because
the interactions with the prototype can enable the client to better understand
the requirements of the desired system.

Prototyping is an attractive idea for complicated and large systems for which
there is no manual process or existing system to help determine the
requirements. Risks associated with the projects are being reduced through
the use of prototyping. The development of the prototype typically starts
when the preliminary version of the requirements specification document has
been developed.

1. Requirements gathering and analysis: A prototyping model begins with
requirements analysis and the requirements of the system are defined in
detail. The user is interviewed in order to know the requirements of the
system.

2. Quick design: When requirements are known, a preliminary design or quick
design for the system is created. It is not a detailed design and includes only
the important aspects of the system, which gives an idea of the system to the
user. A quick design helps in developing the prototype.

3. Build prototype: Information gathered from quick design is modified to
form the first prototype, which represents the working model of the required
system.

4. User evaluation: Next, the proposed system is presented to the user for
thorough evaluation of the prototype to recognize its strengths and
weaknesses such as what is to be added or removed. Comments and
suggestions are collected from the users and provided to the developer.

5. Refining prototype: Once the user evaluates the prototype and if he is not
satisfied, the current prototype is refined according to the requirements. That
is, a new prototype is developed with the additional information provided by
the user. The new prototype is evaluated just like the previous prototype. This
process continues until all the requirements specified by the user are met.
Once the user is satisfied with the developed prototype, a final system is
developed on the basis of the final prototype.

6. Engineer product: Once the requirements are completely met, the user
accepts the final prototype. The final system is evaluated thoroughly followed
by the routine maintenance on regular basis for preventing large-scale
failures and minimizing downtime.

Various advantages and disadvantages associated with the prototyping model
are listed in Table.

Table Advantages and Disadvantages of Prototyping Model

Advantages Disadvantages

 1. Provides a working
model to the user early in the
process, enabling early
assessment and increasing
user's confidence.

 2. The developer gains

experience and insight by
developing a prototype there
by resulting in better
implementation of
requirements.

 3. The prototyping model

serves to clarify requirements,
which are not clear, hence
reducing ambiguity and
improving communication
between the developers and
users.

 4. There is a great

involvement of users in
software development. Hence,
the requirements of the users
are met to the greatest extent.

 5. Helps in reducing risks

associated with the software.

 1. If the user is not satisfied
by the developed prototype,
then a new prototype is
developed. This process goes on
until a perfect prototype is
developed. Thus, this model is
time consuming and expensive.

 2. The developer loses focus

of the real purpose of prototype
and hence, may compromise
with the quality of the software.
For example, developers may
use some inefficient algorithms
or inappropriate programming
languages while developing the
prototype.

 3. Prototyping can lead to

false expectations. For example,
a situation may be created
where the user believes that the
development of the system is
finished when it is not.

 4. The primary goal of

prototyping is speedy
development, thus, the system
design can suffer as it is
developed in series without
considering integration of all
other components.

Fourth Generation Techniques (4GT)

“Fourth generation techniques are the package of software tools that enable a
software Engineer to specify the characteristics at a high level and then a
source code is automatically generated based on these specifications”

In 4GT, we can specify the user requirements in graphic notation or small
abbreviated Language form.

The 4GT includes following tools:

 Data definition

 Data manipulation

 Non procedural language for query

 Report generation

 Code generation

 Spreadsheet capability

Four steps for making a software product using 4GT:

 Requirement gathering

 Design strategy

 Implementation

 Transformation into product

Advantages of 4GT:

 Reduction in software development time.

 Improved productivity of software engineers.

 4GT helped by CASE, tools and code generators that offer solution to many
problems.

Disadvantages:

 Some 4GT are not at all easier than programming languages.

 Generated source code are sometimes inefficient´

 Time is reduced for only small and medium projects.

 Large software developed by 4GT is not maintainable or difficult to
maintain.

Effort Distribution

Each of the software project estimation techniques required to complete
software development.

A recommended distribution of effort across the definition and development
phases is often referred to as the 40–20–40 rule. Forty percent of all effort is
allocated to front-end analysis and design. A similar percentage is applied to
back-end testing. You can correctly infer that coding (20 percent of effort) is
de-emphasized.

40% - analysis and design

20% - Coding

40% - Testing

Requirement Analysis and Testing is the main Part of Software development.

Coding is not most expensive

In-general Ration

10-25 % - Requirement Analysis

20-25 % -Design

15-20% -Coding

30-40% -Testing

The Process Specification

The Process Specification (PSPEC) is used to describe all flow model processes that
appear at the final level of refinement. It is a “mini” specification for each transform
at the lowest refined of a DFD.

PSPEC

narrative

pseudocode (PDL)

equations

tables

diagrams and/or charts

bubble

Analysis Model in Software Engineering

 Analysis model operates as a link between the 'system description' and the

'design model'.

 In the analysis model, information, functions and the behavior of the system is

defined and these are translated into the architecture, interface and component

level design in the 'design modeling'.

Elements of the analysis model

1. Scenario based element

 This type of element represents the system user point of view.

 Scenario based elements are use case diagram, user stories.
2. Class based elements

 The object of this type of element manipulated by the system.

 It defines the object, attributes and relationship.

 The collaboration is occurring between the classes.

 Class based elements are the class diagram, collaboration diagram.

3. Behavioral elements

 Behavioral elements represent state of the system and how it is changed by

the external events.

 The behavioral elements are sequenced diagram, state diagram.

4. Flow oriented elements

 An information flows through a computer-based system it gets transformed.

 It shows how the data objects are transformed while they flow between the

various system functions.

 The flow elements are data flow diagram, control flow diagram.

Analysis Rules of Thumb

The rules of thumb that must be followed while creating the analysis model.

The rules are as follows:

 The model focuses on the requirements in the business domain. The level of

abstraction must be high i.e there is no need to give details.

 Every element in the model helps in understanding the software requirement

and focus on the information, function and behavior of the system.

 The consideration of infrastructure and nonfunctional model delayed in the

design.

For example, the database is required for a system, but the classes, functions and

behavior of the database are not initially required. If these are initially considered

then there is a delay in the designing.

 Throughout the system minimum coupling is required. The interconnections

between the modules is known as 'coupling'.

 The analysis model gives value to all the people related to model.

 The model should be simple as possible. Because simple model always helps

in easy understanding of the requirement.

Data Modeling Concepts

1. Data Objects

A data object is a representation of almost any composite information that must be
processed by software. By composite, we mean something that has a number of
different properties and attributes.

– “Width” (a single value) would not be a valid data object, but dimensions
(incorporating height, width and depth) could be defined as object.

A data object encapsulates data only – there is no reference within a data object to
operations that act on the data. Therefore, the data can be represented as a table
below.

object: automobile

attributes:
make
model
body type
price
options code

2. Data Attributes

Data attributes define the properties of a data object and take one of three different
characteristics. They can be used to:

1. Name an instance of the data object.
2. Describe the instance, or
3. Make reference to another instance in another table.

In addition, one or more of the attributes, must be defined as an identifier, i.e., the
identifier attribute becomes a “key” when we want to find an instance of the data
object. Values for the identifier(s) are unique, although this is not a requirement.

Referring to the data object car, a reasonable identifier might be the ID number.

3. Relationships

Indicates “connectedness”; a "fact" that must be "remembered" by the system and
cannot or is not computed or derived mechanically

 several instances of a relationship can exist
 objects can be related in many different ways

We can define a set of object/relationship pairs that define the relevant
relationships. For example:

 A person owns a car.
 A person is insured to drive a car.

The relationship owns and insured to drive define the relevant connections between
person and car.

Object-Oriented Analysis

The intent of Object Oriented Analysis (OOA) is to define all classes (and the
relationships and behavior associated with them that are relevant to the problem to
be solved.

To accomplish this, a number of tasks must occur:

1. Basic user requirements must be communicated between the customer and
the software engineer.

2. Classes must be defined.
3. A class hierarchy is defined
4. Object-to-object relationships should be represented.
5. Object behavior must be modeled.
6. 1 – 5 are repeated iteratively until the model is complete.

OOA builds a class-oriented model that relies on an understanding of OO concepts.

 Classes and objects
 Attributes and operations
 Encapsulation and instantiation
 Inheritance

Object-Oriented thinking begins with the definition of a class, often defined as:

external entities

things

occurrences roles

organizational units

places

structures

class name

attributes:

operations:

 template
 generalized description
 “blueprint” ... describing a collection of similar items
 a metaclass (also called a superclass) establishes a hierarchy of classes once a

class of items is defined, a specific instance of the class can be identified.

Building a class

ChairTable Desk

PieceOfFurniture (superclass)

Encapsulating and Hiding:

Class Hierarchy:

The object encapsulates both data

and the logical procedures required

To manipulate the data

 method
1

data

method
2

method
4

method
5

method
6

method
3

Methods (Operations, Services)

An executable procedure that is encapsulated in a class and is designed to operate
on one or more data attributes that are defined as part of the class.

A method is invoked via message passing.

Software quality guidelines:

 A design is generated using the recognizable architectural styles and compose

a good design characteristic of components and it is implemented in evolutionary

manner for testing.

 A design of the software must be modular i.e the software must be logically

partitioned into elements.

 In design, the representation of data , architecture, interface and components

should be distinct.

 A design must carry appropriate data structure and recognizable data

patterns.

 Design components must show the independent functional characteristic.

 A design creates an interface that reduce the complexity of connections

between the components.

 A design must be derived using the repeatable method.

 The notations should be use in design which can effectively communicates its

meaning.

Quality attributes

The attributes of design name as 'FURPS' are as follows:

Functionality:

It evaluates the feature set and capabilities of the program.

Usability:

It is accessed by considering the factors such as human factor, overall aesthetics,

consistency and documentation.

Reliability:

It is evaluated by measuring parameters like frequency and security of failure,

output result accuracy, the mean-time-to-failure(MTTF), recovery from failure and

the program predictability.

Performance:

It is measured by considering processing speed, response time, resource

consumption, throughput and efficiency.

Supportability:

 It combines the ability to extend the program, adaptability, serviceability.

These three term defines the maintainability.

 Testability, compatibility and configurability are the terms using which a

system can be easily installed and found the problem easily.

 Supportability also consists of more attributes such as compatibility,

extensibility, fault tolerance, modularity, reusability, robustness, security,

portability, scalability.

Design Heuristics:

[1] Evaluate the “First Interaction” of the program structure to reduce coupling

and improve cohesion

- Modules may be explored or implied for making module independent.
- An explored module becomes two or more modules in final program

structure
- An implied module is the result of combining the processing implied by

two or more modules.

[2] Attempt to minimize structure with high fan-out; strive for fan-in as depth

increases.

[3] Keep the scope of effect of a module within the scope control of that module.

[4] Evaluate module interfaces to reduce complexity and redundancy and improve

consistency.

[5] Define Modules where function is pre-detectable but avoid modules that are

overly [excessively] relative.

Design Documentation

- The design Specification addresses different aspects of design models.

- The data design is specifies Data structure , any external File Structure,

internal Data Structure and a Cross Reference that connects data object

to specific files are all defined.

- The architectural design indicates how the program architecture has

been derived from the analysis model.

- Structural Charts are use to represent the module hierarchy.

- Components – separately addressable elements of s/w such as

subroutines, functions or procedures are initially describe with an

English Language.

- Procedural Design is use to translate the Narratives into a structural

description.

- The design Specification contains a requirements cross reference. The

propose of this cross reference is

(1) To establish that all requirements are satisfied by s/w design.

(2) To indicate which components are created to implements specific

requirements?

- We can develop guidelines for testing of individual modules and

integration of the entire package.

- Design Constraints such as Physical Memory limitations are the necessity

for a specific external interface may dictate special requirements for

assembling of package of s/w

- The Final section of the Design specification contains supplementary

data, Algorithmic Description, native procedures, tabular Data, imports

from external Documents, and other relative information.

- It is also advisable to develop a Preliminary Operational installation

manual. It includes as an appendix to the design documents.

Structural Charts

- It is graphical Representation of the structure of the program.
- A module is representing by a box with module name and an arrow that

means invocation between two modules that called Subordinate and
Super ordinate.

- The arrow is labeled by parameter received with input and output as a
parameters.

- The direction of input and output is represented as ()
- If module A repeatedly call module C and D the it can be re presented as

- The decision can be represented as small diamond box.

- Modules can be categorized into five forms
1) Input Modules

It obtains the information from its subordinate and pass it to

subordinate.

2) Output Modules
It Takes the information from its super ordinates and pass it

to its sub ordinate.

3) Transform Module
This module exists only for the sake of transforming the data

into some other from.

4) Coordinate Module
It manages the Flow of data to and from different

Subordinates.

A

B C D

A

B C D

5) Composite Module
It performs the function of more than one type of module.

Explain transformation from analysis model to design model.

1. Data Design: -

The data design transforms the information domain model
which is created during analysis into the data structure that will
be required to implement the software. The data objects and
relationships defined in the entity relationship diagram and the
detail data content which is shown in the data dictionary proving
the bases for the data design activity.

2. Architecture Design: -

The architectural design defined the relationship between
major structural elements of the software, the design patterns
that can be used to achieve the requirement that have been
defined for the system and the constraints that affect the way in
which architectural design patterns can be applied. This design
represents the frame work of a computer based system can be
derived from the system specification.

3. Interface Design: -

The interface design describes how the software communicates
within itself with systems that interoperate with it and with
people who use it. An interface implies a flow of information. E.g.
data or control and a specification type of behavior therefore
data and control flow diagram provides much of the information
required for interface design.

4. Components Design: -

The component level design transforms structural elements of the

software architectural into a procedural description of software

component. Information obtains from the process specification and

control specifications serve as the basis for component design.

Software Development Life Cycle

Software Development Life Cycle (SDLC) is a process used by the software
industry to design, develop and test high quality software. The SDLC aims to
produce high-quality software that meets or exceeds customer expectations,
reaches completion within times and cost estimates.

 SDLC is the acronym of Software Development Life Cycle.

 It is also called as Software Development Process.

 SDLC is a framework defining tasks performed at each step in the
software development process.

 ISO/IEC 12207 is an international standard for software life-cycle
processes. It aims to be the standard that defines all the tasks required
for developing and maintaining software.

What is SDLC?

SDLC is a process followed for a software project, within a software
organization. It consists of a detailed plan describing how to develop,
maintain, replace and alter or enhance specific software. The life cycle
defines a methodology for improving the quality of software and the overall
development process.

The following figure is a graphical representation of the various stages of a
typical SDLC.

A typical Software Development Life Cycle consists of the following stages −

Stage 1: Planning and Requirement Analysis

Requirement analysis is the most important and fundamental stage in SDLC.
It is performed by the senior members of the team with inputs from the
customer, the sales department, market surveys and domain experts in the
industry. This information is then used to plan the basic project approach and
to conduct product feasibility study in the economical, operational and
technical areas.

Planning for the quality assurance requirements and identification of the
risks associated with the project is also done in the planning stage. The
outcome of the technical feasibility study is to define the various technical
approaches that can be followed to implement the project successfully with
minimum risks.

Stage 2: Defining Requirements

Once the requirement analysis is done the next step is to clearly define and
document the product requirements and get them approved from the
customer or the market analysts. This is done through an SRS (Software
Requirement Specification) document which consists of all the product
requirements to be designed and developed during the project life cycle.

Stage 3: Designing the Product Architecture

SRS is the reference for product architects to come out with the best
architecture for the product to be developed. Based on the requirements
specified in SRS, usually more than one design approach for the product
architecture is proposed and documented in a DDS - Design Document
Specification.

This DDS is reviewed by all the important stakeholders and based on various
parameters as risk assessment, product robustness, design modularity,
budget and time constraints, the best design approach is selected for the
product.

A design approach clearly defines all the architectural modules of the product
along with its communication and data flow representation with the external
and third party modules (if any). The internal design of all the modules of the
proposed architecture should be clearly defined with the minutest of the
details in DDS.

Stage 4: Building or Developing the Product

In this stage of SDLC the actual development starts and the product is built.
The programming code is generated as per DDS during this stage. If the
design is performed in a detailed and organized manner, code generation can
be accomplished without much hassle.

Developers must follow the coding guidelines defined by their organization
and programming tools like compilers, interpreters, debuggers, etc. are used
to generate the code. Different high level programming languages such as C,
C++, Pascal, Java and PHP are used for coding. The programming language is
chosen with respect to the type of software being developed.

Stage 5: Testing the Product

This stage is usually a subset of all the stages as in the modern SDLC models,
the testing activities are mostly involved in all the stages of SDLC. However,
this stage refers to the testing only stage of the product where product
defects are reported, tracked, fixed and retested, until the product reaches
the quality standards defined in the SRS.

Stage 6: Deployment in the Market and Maintenance

Once the product is tested and ready to be deployed it is released formally in
the appropriate market. Sometimes product deployment happens in stages as
per the business strategy of that organization. The product may first be
released in a limited segment and tested in the real business environment
(UAT- User acceptance testing).

Then based on the feedback, the product may be released as it is or with
suggested enhancements in the targeting market segment. After the product
is released in the market, its maintenance is done for the existing customer
base.

Data Flow Diagram [DFD]

Data flow diagram is graphical representation of flow of data in an
information system. It is capable of depicting incoming data flow, outgoing
data flow and stored data. The DFD does not mention anything about how
data flows through the system.

There is a prominent difference between DFD and Flowchart. The flowchart
depicts flow of control in program modules. DFDs depict flow of data in the
system at various levels. DFD does not contain any control or branch
elements.

Types of DFD

Data Flow Diagrams are either Logical or Physical.

 Logical DFD - This type of DFD concentrates on the system process and
flow of data in the system. For example in a Banking software system,
how data is moved between different entities.

 Physical DFD - This type of DFD shows how the data flow is actually
implemented in the system. It is more specific and close to the
implementation.

DFD Components

DFD can represent Source, destination, storage and flow of data using the
following set of components -

 Entities - Entities are source and destination of information data. Entities
are represented by a rectangles with their respective names.

 Process - Activities and action taken on the data are represented by
Circle or Round-edged rectangles.

 Data Storage - There are two variants of data storage - it can either be
represented as a rectangle with absence of both smaller sides or as an
open-sided rectangle with only one side missing.

 Data Flow - Movement of data is shown by pointed arrows. Data
movement is shown from the base of arrow as its source towards head of
the arrow as destination.

Levels of DFD

 Level 0 - Highest abstraction level DFD is known as Level 0 DFD, which
depicts the entire information system as one diagram concealing all the
underlying details. Level 0 DFDs are also known as context level DFDs.

 Level 1 - The Level 0 DFD is broken down into more specific, Level 1 DFD.
Level 1 DFD depicts basic modules in the system and flow of data among
various modules. Level 1 DFD also mentions basic processes and sources
of information.

 Level 2 - At this level, DFD shows how data flows inside the modules

mentioned in Level 1.

Higher level DFDs can be transformed into more specific lower level
DFDs with deeper level of understanding unless the desired level of
specification is achieved.

Modularization: Modularization is the process of dividing a software system

into multiple independent modules where each module works independently.

There are many advantages of Modularization in software engineering. Some

of these are given below:

 Easy to understand the system.

 System maintenance is easy.

 A module can be used many times as their requirements. No need to

write it again and again.

Coupling: Coupling is the measure of the degree of interdependence between

the modules. Good software will have low coupling.

Types of Coupling:

 Data Coupling: If the dependency between the modules is based on the

fact that they communicate by passing only data, then the modules are

said to be data coupled. In data coupling, the components are independent

to each other and communicating through data. Module communications

don’t contain tramp [without declaration] data. Example-customer billing

system.

 Stamp Coupling In stamp coupling, the complete data structure is passed

from one module to another module. Therefore, it involves tramp data. It

may be necessary due to efficiency factors- this choice made by the

insightful designer, not a lazy programmer.

 Control Coupling: If the modules communicate by passing control

information, then they are said to be control coupled. It can be bad if

parameters indicate completely different behavior and good if parameters

allow factoring and reuse of functionality. Example- sort function that

takes comparison function as an argument.

 External Coupling: In external coupling, the modules depend on other

modules, external to the software being developed or to a particular type

of hardware. Ex- protocol, external file, device format, etc.

 Common Coupling: The modules have shared data such as global data

structures. The changes in global data mean tracing back to all modules

which access that data to evaluate the effect of the change. So it has got

disadvantages like difficulty in reusing modules, reduced ability to control

data accesses and reduced maintainability.

 Content Coupling: In a content coupling, one module can modify the data

of another module or control flow is passed from one module to the other

module. This is the worst form of coupling and should be avoided.

Cohesion: Cohesion is a measure of the degree to which the elements of the

module are functionally related. It is the degree to which all elements directed

towards performing a single task are contained in the component. Basically,

cohesion is the internal glue that keeps the module together. A good software

design will have high cohesion.

Types of Cohesion:

 Functional Cohesion: Every essential element for a single computation is

contained in the component. A functional cohesion performs the task and

functions. It is an ideal situation.

 Sequential Cohesion: An element outputs some data that becomes the

input for other element, i.e., data flow between the parts. It occurs

naturally in functional programming languages.

 Communicational Cohesion: Two elements operate on the same input

data or contribute towards the same output data. Example- update record

into the database and send it to the printer.

 Procedural Cohesion: Elements of procedural cohesion ensure the order

of execution. Actions are still weakly connected and unlikely to be

reusable. Ex- calculate student GPA, print student record, calculate

cumulative GPA, and print cumulative GPA.

 Temporal Cohesion: The elements are related by their timing involved. A

module connected with temporal cohesion all the tasks must be executed

in the same time-span. This cohesion contains the code for initializing all

the parts of the system. Lots of different activities occur, all at init time.

 Logical Cohesion: The elements are logically related and not functionally.

Ex- A component reads inputs from tape, disk, and network. All the code

for these functions is in the same component. Operations are related, but

the functions are significantly different.

 Coincidental Cohesion: The elements are not related (unrelated). The

elements have no conceptual relationship other than location in source

code. It is accidental and the worst form of cohesion. Ex- prints next line

and reverse the characters of a string in a single component.

Design Concepts:

Following are some design concepts which designer should keep in mind
while preparing a design for the software.

1. Abstraction:-

Concentrate on the essential features and ignore details that are not relevant
Means hiding the complexity.

1) Procedural Abstraction: -

It is name sequence of instructions that has a specific and limited function. E.g.
procedural abstraction would be the word open for a door for open implies a
long sequence of procedural steps like walk to the door, reached out and
knocked and pull door and step away from moving door etc.

Means in-sort hiding the Procedure details here hiding the procedure of how
to open door.

2) Data Abstraction: -

Data abstraction is a name collection of data that describes a data object in the
context of the procedural abstraction open we can define a data abstraction
called door like any data object. The data abstraction for door would be a set
of attributes that describe the door. E.g. Door type, swing direction, opening
mechanism, weight dimension etc. it follows that the procedural abstraction

would make use of information contain in the attributes of the data
abstraction door.

Means in-sort hiding the data details here hide the door details.

3) Control abstraction:

Implies a program control mechanisms without specify internal details.

Means in-short hiding the Control Details.

2. Refinements: -

The process of program refinement (modification or enhancement) is a
partitioning process i.e. used during requirement analysis. Refinement is
actually a process of elaboration (expansion). We begin with a statement of
function or description of information i.e. defines a high level of abstraction.
The statement describes function or information conceptually but provides no
information about the internal working of the functions or the internal
structure of the information. Refinement causes the system designer to
elaborate on the original statement providing more and more detail as each
successive refinement occurs.

Abstraction and refinement are complimentary concepts. Abstractions enable
a designer to specify procedure and data refinement helps the designer a
detail at a low level.

3. Modularity: -

Software is divided into separately named and addressable components which
are called modules. Those are integrated to satisfy problem requirements.
Modularity is a single attribute of software that allows a program to be
intellectually manageable. Monolithic software i.e. a large program composed
of a single module cannot be easily readable the number of control paths,
spend of referential number of variables and overall complexity would make
understanding close of impossible.

It is easier to solve a complex problem when you break it into manageable
pieces (Modules). When we divide software in to modules then development
effort also decreased. From above graph we can show that as the number of
modules grows the effort or cost associated with integrating the module also
grows. These characteristics leads to a total cost or effort which shown in
above figure. This is a M of modules that would result in minimum
development cost and here another important question arises when
modularity is consider how do we define an appropriate module of a given
size? The answer lies in the method use to define modules within a system.
These are arteries define that enable us to evaluate a design method with
respect to define an effective module system.

1) Modular Decomposability: -

Provide a systematic approach for decomposing the problem into sub-
problems. If a design method provides a systematic mechanism for
decomposable problem into the sub problem then we can reduce the
complexity of overall problem by achieving effective modularity software.

2) Modular Composability: -

Modular Composability means if a design method enable existing or reusable
design components to be assembled into a new system then the modular
solution does not reinventing wheel.

3) Modular Understandability: -

If a module can be understood as a standalone unit without reference to other
module then it will be easier to build and easier to change.

4) Modular Continuity: -

If small changes to the system requirements results in changes to individual
modules rather-then system wise changes the impact of change all other side
effects should be minimized.

5) Modular Protection: -

If any unexpected condition occurs within a module and its effects are contain
within that module only, the impact of other side effects should be minimized.

4. Software Architecture: -

The architecture of a system describes its major components, their
relationships (structures), and how they interact with each other. Software
architecture and design includes several contributory factors such as Business
strategy, quality attributes, human dynamics, design, and IT environment.

Architecture serves as a blueprint for a system. It provides an abstraction to
manage the system complexity and establish a communication and
coordination mechanism among components. It defines a structured

solution to meet all the technical and operational requirements, while
optimizing the common quality attributes like performance and security.

Further, it involves a set of significant decisions about the organization
related to software development and each of these decisions can have a
considerable impact on quality, maintainability, performance, and the overall
success of the final product. These decisions comprise of −

 Selection of structural elements and their interfaces by which the system
is composed.

 Behavior as specified in collaborations among those elements.

 Composition of these structural and behavioral elements into large
subsystem.

 Architectural decisions align with business objectives.

 Architectural styles guide the organization.

Control Hierarchy: -

The control hierarchy also called program structure represents the
organization of program components and implies a hierarchy of control. It
does not represent procedural aspects of software such as sequence of
software, occurrence, and order of decision or representation of operations.

In above figure depth and width provide an indication of the number of levels
of control and overall span of control. Fan – out is a measure of the number of
modules that are directly controlled by another module. Fan – in indicate how

many modules directly control a given module? The control relationship
among modules is expressed in the following way. A module that controls
another module is said to be super ordinate to it and a module controlled by
another is said to subordinate to the controller. In above figure module M is
super-ordinate to modules a, b and c and module k is subordinate to module
c.

Structural Partitioning: -

Program structure can be partitioned both horizontally and vertically.

Horizontal partitioning: defines separate principles branches of modular
hierarchy for each major program function. Control modules represents each
coordination between remaining modules and execution of the function,
partitioning horizontally provides following benefits.

1) Software i.e. easier to test.

2) Software i.e. easier to maintain.

3) Software i.e. easier to extend.

4) Propagation of fewer side effects or less side effects.

Vertical partitioning: is also called factoring we suggest that control and work
should be distinguished top down in program structure. Top level modules
should perform control functional does less actual processing work, modules
that reside low in structure are called the worker modules performing all
input computation and output task.

Data Structure: -

Data structure is a representation of logical relationship among individual
elements of data. Data structure is an important program structure to the
representation of software architecture.

Data structure shows the organization of methods to access a scalar item is the
simplest form of all data structure. A scalar item represents a single element
of information which is addressed by an identifier and i.e. accessed by specific
a single address in memory. When scalar items are organized as a list of
continuous group then a sequential vector is formed, when the sequential
vector is extended into two or three or an arbitrary number of dimension then
a n dimension space is created and the most common n dimension space is
two dimensional matrix and n dimension space is also called an array and a
link list is a data structure that organized the memory elements into a
noncontiguous scalar item or vector.

5. Software Procedure: -

Focus on the processing details of each module. Procedure must provide exact
specification of processing, including sequence of events, exact decision
points, repetitive operation and even data organization and structure, there is
relationship between structure and procedure.

6. Information Hiding: -

The principle of information hiding suggest that modules should be specify
and design so that procedure and data contain within a module is in
accessible to other modules that have no need for such information hiding
implies that effective modularity can be achieved by a set of independent
module.

● They pass only that much information to each other, which is required to

accomplish the software functions.

● The way of hiding unnecessary details is referred to as information
hiding.

● Information hiding is of immense use when modifications are required
during the testing and maintenance phase.

● Hiding Defines and enforces access constraints to both procedural detail
within a module and any local data structure used by the module.

● Hiding implies that effective modularity can be achieved by defining a set
of independent modules that communicate with one another only that
information necessary to achieve software function.

Advantages:

● Leads to low coupling
● Emphasizes communication through controlled interfaces.
● Decreases the probability of adverse effects.
● Restricts the effects of changes in one component on others.
● Results in higher quality software.

QFD (quality Function Deployment): -

QFD is a quality management technique that translates the need of the
customer into technical requirement for software. QFD defines requirement in
a way that maximizes the customer specification. QFD constraint on
maximizing customer satisfaction from the software engineering process. QFD
identifies three types of requirements. (1) Normal Requirements, (2) Expected
Requirements and (3) Exciting Requirements.

1. Normal Requirements:-

The objectives and goals that are defined a product or system during meetings
with the customer if these requirements are presents then the customer is
satisfied. Examples of normal requirements might be requested types of
graphical display, specific system functions and define level of performance.

2. Expected Requirements:-

These requirements are implicit to the product or system and may be so
fundamental that the customer does not explicit state them their absence then
it is a cause of significant dissatisfaction examples of expected requirements
are base of human machine interaction, overall operational correctness and
reliability and software installation.

3. Exciting Requirements:-

These features go beyond the customers expectation proves to be very
satisfying when present. E.g. word processing software is requested with
standard function, the delivered product contains a number of page layout
capabilities.

In meeting with the customer function deployment is used to determine the
value of each function i.e. required for the system information deployment
identities both the data objects & events that the system must consume and
produced. Task deployment examines the behavior of the system or product
within the given environment.

QFD uses customer interviews and observation surveys and examination of
historical data as row data for the requirement gathering activity. Those data
are then translated into a table of requirement and this table is called
customer voice table.

Analysis Principles:

1. The information domain of a problem must be represented and
understood.

2. The functions that the software is to perform must be defined.
3. The behavior of the software (as a consequence of external events) must

be represented.
4. The models that depict information function and behavior must be

partitioned in a manner and uncovers details in a layered (or
hierarchical) fashion.

5. The analysis should move from essential information toward
implementation detail.

The information domain is examined so that function may be understood
completely.

The models are used so that the characteristic of function and behavior can be
communicated in a compact fashion. Partitioning is applied to reduce
complexity.

1. Understand the problem before you begin to create the analysis model.
2. Develop prototypes that enable a user to understand how

human/machine interaction will occur.
3. Record the origin of and reason for every requirement.
4. Use multiple views of requirements
5. Rank requirements
6. Work to eliminate ambiguity

A software engineer who takes these principles to heart is more likely to
develop a software specification that will provide an excellent foundation for
design.

 The Information Domain:

All software applications can be collectively called data processing. Software
is built to process data also processes the events. An event represents some
aspect of system control and is really nothing more than Boolean data.

e.g. software controlled automobile engine.

(i.e. to control flow of fuel)

The information domain contains three views of the data and control as each
is processed by a computer program. The views are as:

1. Information Flow
2. Information content and relationship
3. Information structure

The information flow represents the manner in which data and control change
as each moves through a system.

The information applied to the data are function or sub-functions that a
program must perform.

Data and control that move between two transformations (functions) define
the interface for each function.

2) Information Content and Relationship

Information content represents the individual data and control objects that
comprise some larger collection of information that is transformed by the
software.

e.g. The data object paycheque is a composite of a number of important pieces
of data.

The content of paycheque is defined by the attributes that are needed to
create it. Similarly, the content of a control object called system status, might
be defined by a string of bits. Each bit represents a separate item of
information that indicates whether or not a particular device is on or off-line.

Data and control objects can be related to other data and control objects.

e.g. The data object paycheck has one or more relationship with the objects
timecard, employee, bank and others. During the analysis of the information
domain, these relationships should be defined.

3) Information Structure

Information on structure represents the internal organization of various data
and control items.

A concept of data structure refers to the design and implementation of
information structure.

Questions like,

 Are data and control items to be organized as an n-dimensional tables OR
Hierarchical tree structure?

 Within the context of the structure, what information is related to other
information?

 Is all information contained within a single structure or are distinct
structures to be used?

 How does information structure relate to information in another
structure?

Are answered by an assessment of information structure.

Specification:

The specification is directly associated with the quality of software. If the
specification is incomplete its results into frustration and confusion among
the software engineer and ultimately it affects the quality, completeness,
timeliness of the software.

The software specification can be viewed as representation of the
requirements which tends us to successful software implementation.

Specification is a description of what is desired rather than how it is to be
obtained.

Specification Principles

A number of specification principles adapted from the work of Balzer and
Goldman [BAL86]:

1) Separate functionality from implementation

2) Develop a model of the desired behavior of a system that encompasses
data and the functional responses of a system to various stimuli from the
environment.

3) Establish the contact in which software operates by specifying the manner
in which other system components interact with software.

4) A specification must encompass the environment in which the system
operates.

5) A system specification must be a cognitive model

6) A specification must be operational

7) A specification must be tolerant of incompleteness and augmentable.

8) A specification must be localized and loosely coupled.

The list of basic specification principles noted above provides a basis for
representing software requirements.

 Representation of Specification

A set of guidelines for represents the specification is as under.

1) Representation format and content should be relevant to the problem.

i.e. a specification of a manufacturing automation system would use different
symbology, diagrams and language than the specification for a programming
language compiler.

2) Information contained within the specification should be nested.

Representation should reveal layers of information so that a reader can move
to the level of detail that is required. Paragraph and diagram numbering
schemes should indicate the level of detail that is being presented.

3) Diagrams and other notational forms should be restricted in number and
consistent in use.

Confusing notation or inconsistent notation (graphical or symbolic) degrades
understanding and tends towards errors.

4) Representation should be revisable.

FAST (Facilitated Application Specification Technique): -

 In this technique or approach joint team of customers & developers who
work together to identify the problem, purpose and elements of the
solution.

 In that team one expert from each field included like Analyst side(one
expert from developers side , one from tester side , one from designer
side etc.) same way the experts from the customer side from each
department are included in the meeting.

 Each experts note down some points in meting based on points they
prepares one report and finally reports are submitted to leader of the
team.

 After collecting the all the reports from the experts analyst or (team
leader) will prepares an agenda for software development means make
schedule.

 FAST has been used predominantly by the information system but the
technique affects quotient [amount of / share] for improved
communication in applications of all kinds. The basic guidelines for FAST
approach are,

1) Meeting is conducted and attempted by both software engineers and
customers.

2) Rules for preparation and participation are established.

3) An agenda is suggested that is formal enough to cover all important points.

4) Facilitator controls the meeting.

5) Definition mechanism is used when it can be a worksheet or an electronic
bulletin board.

6) The goal is to identify the problem, proposed elements of the solution,
negotiate different approaches and specify a preliminary set of solution
requirements.

 Initial meetings between the developer and customer occur and basic
questions and answers help to establish the scope of the problem and the
overall perception of the solution

 Out of these initial meetings the developer and customer write one or two
page product request. Meeting place, time and date for FAST are selected and
a facilitator is chosen.

 Attendees from both the development and customer organization are
invited to attempt. The product request is distributed to all attendees before
the meeting date while reviewing the request in the days before the meeting
each FAST attendees is use to make the list of objects that are part of the
environment surrounds the system, other objects that are to be produced by
the systems and objects that are used by the system. To perform its function
list of constraints i.e. cost size and sometimes business rule of policy,
performance criteria are also developed.

 Each person on the FAST team develop the list which is describe about
objects describes for e.g. safe home system might include smoke detectors,
window & doors sensor, motion detector and alarm, an event from which a
sensor has been activated, a control panel and so on.

 Services can be setting the alarm, monitoring the sensor dialing the phone,
reading display.

 In a similar fashion each FAST develop list of constraints as a FAST meeting
being the first topic of discussion is the need and justification for the new
product at the FAST.

 After the mini specifications are computed each FAST attendees makes a
list of validation criteria for the product or system.

 Finally one or more participants is assigned the task of writing the
complete specification using all inputs from the FAST meeting and later on all
requirement point of view from all members and refinement is prepared for
development of a design.

Characteristics of SRS:

(System Requirement Specification Document)

The final output of the requirement analysis phase is the software
requirements specification document it is also known as SRS document. To
properly satisfy the basic goals and SRS should contain different types of the
requirements following are some of the desirable characteristics of SRS.

1). Correct

An SRS is correct if every requirement included in the SRS represents
something required in the final system.

2). Complete

An SRS is complete if every this software is supposed to do the responses of
the software to all classes of input data are specified data into SRS.
Correctness ensure that what is specified is done correctly, completeness
ensures that everything is indeed specified.

3). Unambiguous (unmistakable/clear cut)

An SRS is unambiguous if and only is every requirements stated or written has
one and only one interpretation.

4). Verifiable

Verification of requirements is done through reviews. It also implies that an
SRS is understandable at least by the developer, by client and by the user.

5). Consistent

An SRS is consistent if there is no requirement that conflict with another
terminology can cause inconsistency. Ex Different requirements may use
different terms to refer to the same object. There may be logical conflict may
be requirement causing inconsistency. Ex A requirements states that an event
E should occur before F but than other set of requirement stays that and event
F should occur before event E. Inconsistency in SRS can be a reflection of
major problem.

6). Ranked of importance / Stability

An SRS is ranked for an importance if for each requirement the importance
and stability of a requirement reflect a term of expected change stability of a
requirement reflects in futures. Writing and SRS is an interactive process,
when the requirement systems are specified.

7). Modifiable

They are later modified as the needs of the clients change. SRS should be easy
to modify. SRS is modifiable if its structures and style are such that any
necessary change can be made easily while continuing completeness and
consistency.

8). Traceable

An SRS is traceable if the origin of each of its requirement is clear and if it
fulfill the reference in of each requirement in future development should be
traceable to some design and code element and backward traceability
requirement. If be possible to trace design and code element to the
requirement. They support traceability aids verification and validation from
all this characteristics completeness is the most important requirement. One
of the most common problems in requirement specification is when some of
the requirement of the client is to specify.

Techniques for Requirements Gathering

In the business environment, it is required to have an effective way of market
research to understand what a customer wants and how to be successful over
competitors. We need to focus on how to make the users to achieve their
goals. The Requirements gathering process will help in understanding the
needs of a customer, especially in the IT industry.

There are several different requirement gathering techniques that can be
used. Several tools and techniques are used by the stakeholders and business
analyst to facilitate this process and capture the exact and detailed
requirements. The Requirements gathering techniques should help in
breaking down Requirements and Gathering into digestible steps thereby
providing instructions to complete each step.

Following are some of the requirements gathering techniques.

 Interviews

 Questionnaires

 Observations

 Facilitated Workshops

 Focus groups

 JAD

 Brainstorming

 Prototyping

 Documentation analysis

Interviews
Interviews are of primary ways for information gathering where the system
analyst will have face-to-face interaction with relevant stakeholders or
subject matter experts. The business analyst will spend most of the time to
interview system users and system owner during the early stages of project
life cycle.

It is important to be very clearly articulate of the objectives of interviews and
the questions could be prepared ahead of time or asked spontaneously and
the responses should be recorded. Interviews could also be done with
multiple interviewers and / or multiple interviewers. Interviews could be
either one on one or group interviews.

Types of Interviews
There are two types of interviews namely unstructured interviews and
structured interviews.

UNSTRUCTURED INTERVIEWS

These involve a conversation by the interviewee asking general questions. It
is usually inefficient technique as it has a tendency to go off track from the
main goal and the analyst will have to redirect the interview in the right path.

STRUCTURED INTERVIEWS

The interviewer will be the one making specific questions in order to obtain
the required information from the interviewee. This type of interview is
considered to be efficient.

SEMI-STRUCTURED INTERVIEWS

It begins with focused questions and moves to open-ended discussion. The
data of interest will have to be predetermined. Some of the questions that
need to be asked are mentioned below.

 How should a task be performed?
 Why is this task being performed?
 Under what conditions, this task should be performed?
 What information do you need to complete the task
 Whom should the communication be sent to?

Components of SRS:

Some of the system properties that an SRS should specified and the basic an
SRS must address are as follows.

1. Functionality
2. Performance
3. Design Constrains imposed on an implementation
4. External Interfaces

1). Functionality

Specified which output should be produce from the given input. They describe
the relationship into the input or output of the system for each functional
requirement for detail description is all the data input and their source the
unit of measure and the range of valid output must be

Specified all the option to be performed on the input data to obtain the output
should be specified. This include specified the validity checks on the input or
output data parameters effected by the option and equations or other logical
there must be used to transform, the input or the corresponding output. Ex. if
there is a formula keep must be specified in SRS. An important part of the
specification is the system behavior in abnormal situation like invalid input or
error during computation. The function requirement must clearly state that
what the system should the who keep such situation occurs specified the
behavior of the system for invalid input invalid output. Ex. of the situation is
an airline reservation system where a reservation cannot be made even for
valid passenger if the airline is fully full in sort the system behavior for input
or all possible stacks should be specified.

2). Performance Requirement

This part of an SRS specifies the performance constraints on the software
system. The entire requirement relating to the performance characteristics of
the system must be clearly specified there are two types of performance
requirements.

1. Static
2. Dynamic

1). Static Requirement

Static requirement are those that do not imposed constraints on the execution
characteristics of the system. This includes requirement like the number of
terminal to be supported the number of simultaneous users to be supported
and the number of files that the system has to process and their sizes. These
are also called capacity requirement of the system.

 2). Dynamic Requirement

Dynamic requirement specification constraints on the execution behavior of
the system this includes response and through put constraints on the system.
Response time is expected time for the compilation on an option and through
put is an expected time for the compilation on an option and through put is an
expected number of options that can be perform in a unit time. The SRS may
specify. The number of transaction must be process for time. What the
response time for a particular command should be requirement such as
response time should be good or the system must be able to process all the
transaction quickly are not describe because they are depended on machine
can verified according to the machine.

3). Design constraints:

There are number of factors in client environment that may restrict that
choice of a designer such factors is:

1. Resource limits
2. Operating Environment
3. Reliability & Fault tolerance
4. Security environment and Policies of organization

1). Resource Limits

Standard Compliance

This specifies the requirements for the standard that the system must follow
the standard may include the report format and accounting procedure.

2). Operating Environment

Hardware Limitations

The software may have to operate on some existing or predetermine
hardware. Hardware limitations can include the types of machines; operating
system available on the system languages supported a limit on primary and
secondary storage.

3). Reliability and fault tolerance

Fault tolerance requirement can place a major constraints on how the system
is to be design fault tolerance requirement often make the system more
complex and expensive requirement it recovery require are integral part of
the system. Detailing what the system should do if some failure occurs to
ensure certain properties reliability is very important for critical applications.

4). Security

Security requirements are particularly significant in defense system and many
database system security requirements place restrictions on the use of certain
commands, control access to data, provide different kinds of access
requirement for different people, require the use of passwords and
cryptography techniques and maintain a log of activities in the system.

4). External Interface Requirements

All the possible interaction of the software with people, hardware and other
software should be clearly specify for the user interface the characteristics
each user interface of the software product should be specify user interface is
become an important and must be given proper attention a preliminary user
manual should be created with all user commands, screen formats, an

explanation of how the system will appear to the user and feedback and error
messages for hardware interface requirement the SRS should specified the
logical characteristics of each interface between the software product and
hardware components if the software is to execute on existing hardware or on
predetermine hardware all the characteristics of the hardware including
memory restriction should be specified. The interface requirement should
specify the interface with other software the system will use or that will use
the system. These include the interface with the operating system and other
applications.

Systems analyst

A systems analyst is a person who uses analysis and design techniques to solve
business problems using information technology. Systems analysts may serve
as change agents who identify the organizational improvements needed,
design systems to implement those changes, and train and motivate others to
use the systems.

A systems analyst may:

 Identify, understand and plan for organizational and human impacts of
planned systems, and ensure that new technical requirements are
properly integrated with existing processes and skill sets.

 Plan a system flow from the ground up.
 Interact with internal users and customers to learn and document

requirements that are then used to produce business requirements
documents.

 Write technical requirements from a critical phase.
 Interact with designers to understand software limitations.
 Help programmers during system development, e.g. provide use

cases, flowcharts or even database design.
 Perform system testing.
 Deploy the completed system.
 Document requirements or contribute to user manuals.
 Whenever a development process is conducted, the system analyst is

responsible for designing components and providing that information to
the developer.

Requirement Analysis

Requirements analysis is a software engineering task that bridges the gap
between system level software allocation and software design.

 It enables the system engineer to specify software function and performance
indicate software’s interface with other system elements and establish
constraints that software must meet.

 Requirement analysis allows the software engineer (i.e. analyst) to refine the
software allocation and build models of the data, functional and behavior
domains that will be treated by software.

 Finally, the requirement specification provides the developer and the
customer with the means to assess quality once software is built.

Requirement analysis divided into five areas:

1) Problem recognition

2) Evaluation and synthesis

3) Modeling

4) Specification

5) Review

 Requirement analysis Task

1). Problem Recognition

Initialize the system analyst studies the system specification of the software
and project plan and the analyst must establish contact with management and
technical staff of the user or customer organization and software development
organization. The project manager can serve as a coordinator for
establishment of communications paths. The goal of the analysis is to
reorganize the basic problem element which is perceived by the user or
customer.

2). Synthesis and evaluation

Problem evaluation and solution synthesis is the next major area of effort for
analysis. The analyst must evaluate the flow and content of information,
define and expand all software function, understand software behavior in the
context of event of the effect system, establish system interface characteristics
and on cover design constrains. Each of these tasks serves to describe the
problem so that and overall approach or solution may be synthesis. Evaluating
current problems and desired information and input and the output the
analyst begins to synthesis one or more solution.

Throughout evaluation and solution synthesis the analyst’s primary focus is
on “What” or “How” what data does the system produce and consume what
functions must the system perform what interfaces are define and what
constrains applied?

3). Modeling

During the evaluation and solution synthesis activities the analyst creates
models of the system in an effort to better understand data and control flow,
functions processing and behavior operation. The model serves the
foundation for software design and the basic for the creation of a specification
for the software.

4). Requirement Specification & Review:

After making the model analyst makes a plan and schedule for development.
The information gathered during the system study was analyzed to determine
the requirement specifications. Based on the issues governing the system,
requirements in non-technical terms formulated.

1. We need to develop rough prototype to check the basic functionality of
the software.

2. If the major modules are not working properly then the software might
not satisfy the user.

3. Interaction between the operator and system analyst must be fast and
reliable.

Requirement Gathering Techniques (Elicitation): -

1. Initiating a Process of Requirement Gathering: -
2. The most commonly used requirement gathering technique is to conduct

a meeting or interview.
3. We can say to get the requirements of our customer communication must

be initiated.
4. The analyst start by asking context free questions i.e. a set of questions

that will lead to a basic understanding of the problem.
5. Analyst and customer arrange one meeting, in that meeting customer

gives the software requirement, based on that requirement analyst asks
some question to customer for better understanding the requirement
and overall goals and the benefits e.g. the analyst can ask following
questions.

 Who is behind the request for this system?
 Who will use the solution?
 What will be the economic benefit of a successful solution?
 Is there another source for the solution that customer require?

The next set of questions enables the analyst to gain better understanding of
the problem and the customer to voice about the solution. The second set of
questions can be how can you characterize good output that would be
generated by a successful solution of software.

 What problems will this solution address?
 Can you describe the environment in which the solution will be used?
 Will special performance issues or constraints affect to way the solution

approach?
 The final set of questions focuses on the effectiveness of the meeting, it is

called Meta
 Can anyone else provide additional information?
 Should I ask anything else about the problem?
 Are my questions relevant to the problem that customer have?
 Am I asking too many questions?

Software/System Requirement Specification

 Software requirement specification (SRS) is produced at the end of analysis
task. The following is the general outlines for SRS, which is suggested by
National Bureau of Standards and U.S. Departments of defense.

1. Introduction
2. System reference
3. Overall description
4. Software project constraints
5. Information Description
6. Information content representation
7. Information flow representation
8. Data flow
9. Control flow

III. Functional Description

1. Functional partitioning
2. Functional Description
3. Processing narrative
4. Restrictions / Limitations
5. Performance requirements
6. Design constraints
7. Supporting diagrams
8. Behavioral Description
9. System states
10. Events and actions
11. Validation criteria
12. Performance bounds
13. Classes of tests
14. Expected software response
15. Special considerations
16. Bibliography

VII. Appendix

The Introduction states the goals and objectives of the software, describing it
in the context of the computer based system.

The Information Description provides a detailed description of the problem
that software must solve.

A description of each function required to solve the problem is presented in
the Functional Description. A processing narrative is provided for each
function; design constraints are stated and justified; performance
characteristics are stated.

The Behavioral Description section examines the operation of the software as
a consequence of external events and internally generated control
characteristics.

The most important section of SRS is Validation Criteria.

The Bibliography contains references to all documents that relate to the
software. These include other software engineering documentation, technical
references, vendor literature, and standards.

The Appendix contains information that supplements the specification.
Tabular data, detailed description of algorithms, charts, graphs, and other
material are presented as appendixes.

In many cases SRS may be accompanied by an executable prototype, paper
prototype, or preliminary user’s manual.

The preliminary user’s manual presents the software as a black box. That is,
heavy emphasis is placed on user input and resultant output. The manual can
serve as a valuable tool for uncovering problems at the human-machine
interface.

Specification Review:

Review of SRS is conducted by both software developer and customer.

The review is first conducted at a macroscopic level. At this level, reviewers
attempt to ensure that the specification is complete, consistent, and accurate.

The following questions are addressed:

1) Do stated goals and objectives for software remain consistent with system
goals and objectives?

2) Have important interfaces to all system elements been described?

3) Is information flow and structure adequately defined for the problem
domain?

4) Are diagrams clear? Can each stand-alone without supplementary text?

5) Do major functions remain within scope, and has each been adequately
described?

6) Is the behavior of the software consistent with the information it must
process and the function it must perform?

7) Are design constraints realistic?

8) Have the technological risks of development been considered?

9) Have alternative software requirements been considered

10) Have validation criteria been stated in detail? Are they adequate to
describe a successful system?

11) Do inconsistencies, omissions, or redundancy exits

12) Is the customer contact complete?

13) Has the user reviewed the preliminary user’s manual or prototype?

14) How are planning estimates affected?

Coupling and Cohesion

When a software program is modularised, its tasks are divided into several
modules based on some characteristics. As we know, modules are set of
instructions put together in order to achieve some tasks. They are though,
considered as single entity but may refer to each other to work together.
There are measures by which the quality of a design of modules and their
interaction among them can be measured. These measures are called coupling
and cohesion.

 Cohesion

Cohesion is a measure that defines the degree of intra-dependability within
elements of a module. The greater the cohesion, the better is the program
design.

There are seven types of cohesion, namely –

 Co-incidental cohesion - It is unplanned and random cohesion, which
might be the result of breaking the program into smaller modules for the
sake of modularization. Because it is unplanned, it may serve confusion
to the programmers and is generally not-accepted.

 Logical cohesion - When logically categorized elements are put together
into a module, it is called logical cohesion.

 Temporal Cohesion - When elements of module are organized such that
they are processed at a similar point in time, it is called temporal
cohesion.

 Procedural cohesion - When elements of module are grouped together,
which are executed sequentially in order to perform a task, it is called
procedural cohesion.

 Communicational cohesion - When elements of module are grouped
together, which are executed sequentially and work on same data
(information), it is called communicational cohesion.

 Sequential cohesion - When elements of module are grouped because the
output of one element serves as input to another and so on, it is called
sequential cohesion.

 Functional cohesion - It is considered to be the highest degree of
cohesion, and it is highly expected. Elements of module in functional
cohesion are grouped because they all contribute to a single well-defined
function. It can also be reused.

 Coupling

Coupling is a measure that defines the level of inter-dependability among
modules of a program. It tells at what level the modules interfere and interact
with each other. The lower the coupling, the better the program.

High coupling makes modifying parts of the system difficult, e.g., modifying a
component affects all the components to which the component is connected.

Coupling is a measure of interconnection among modules in a software
structure. Coupling depends on the interface complexity between modules.
The point at which entry or references made to a module and what data
passes across the interface. In software design we should try for lowest
possible coupling.

 If modules share common data, it should be minimized
 Few parameters should be passed between modules in procedure calls

[recommended 2 – 4 parameters]

Types of coupling, from strongly coupled (least desirable)

Weakly coupled (most desirable):

1) Content coupling

2) Common coupling

3) External coupling

4) Control coupling

5) Stamp coupling

6) Data coupling

There are five levels of coupling, namely -

 Content coupling - When a module can directly access or modify or refer
to the content of another module, it is called content level coupling.

o module directly affects the working of another module
o occurs when a module changes another module’s data or when

control is passed from 1 module to the middle of another (as in a
jump)

 Common coupling- When multiple modules have read and write access to
some global data, it is called common or global coupling.

o 2 modules have shared data
o occurs when a number of modules reference a global data area
o Eg. In our Example Module c,g,k.

 Control coupling- Two modules are called control-coupled if one of them
decides the function of the other module or changes its flow of execution.

 Stamp coupling- When multiple modules share common data structure
and work on different part of it, it is called stamp coupling.

o Occurs when complete data structures are passed from 1 module to
another

o The precise format of the data structures is a common property of
those modulesEg. In our Example between Module a and b.

 Data coupling- Data coupling is when two modules interact with each
other by means of passing data (as parameter). If a module passes data
structure as parameter, then the receiving module should use all its
components.

o Only simple data is passed between modules
o 1 to 1 correspondence of items exists
o Eg. In our Example between Module a and c.

Design Principles:

Software design is both a process and a model. The design process is sequence
of steps that enable the designer to describe all aspects of the software to be
built. It is important that the design process is not simply sequential process
but it is a sense of what makes quality software. The design model is the
equivalent of an architectural plan for a house. It begins by representing the
total things to be built. Davis has suggested following principles for software.

1. The design process should not suffer from “tunnel vision”means a good
designer should consider alternative approaches, judging each based on
the problem, the resources available to do the job and should consider
all design concepts.

2. The design should be traceable to the analysis model means a single
element of the design model often traces to multiple requirements so it is
necessary to have a means for tracking how requirements have been
satisfied by the design model.

3. The design should not reinvent the wheel means systems are constructed
using a set of design patterns. These patterns should always been chosen
as an alternative to reinvention because time is short and resources are
limited so design time should be invested in representing truly new
ideas and integrating those patterns that already exists.

4. The design should minimize the intellectual distance between the
software and the problem as it exists in the real word.

5. The design should exhibit uniformly and integration.Design is uniform
means it appears that one person develop the entire thing. Rules of style
and formats should be defined for a design till before design work
begins. Design is integrated if care is taken in defining interface between
design components.

6. The design should be structured to accommodate change means if we are
using prototyping according to above concept.

7. The design is not a coding and coding is not a design means even when
detail procedural design are created for program components the level
of abstraction of the design model is higher than source code.

8. The design should be received and assess for quality as it is being
created. A variety of design concepts and design measures are available
to access the designer is assessing quality.

When these design principles are properly applied the software engineer
creates a design that exhibit both external and internal quality factors.
External quality factors are those properties of the software that can be

observed by users. E.g. speed, reliability, concentrate etc. an inter quality
factors are of important to software engineer they lead to a high quality
design from the technical point of view to achieve internal quality factors. The
designer must understand basic design concepts.

